Python3-cookbook/c09/p18 define classes programmatically

来自菜鸟教程
跳转至:导航、​搜索

9.18 以编程方式定义类

问题

你在写一段代码,最终需要创建一个新的类对象。你考虑将类的定义源代码以字符串的形式发布出去。 并且使用函数比如 exec() 来执行它,但是你想寻找一个更加优雅的解决方案。


解决方案

你可以使用函数 types.new_class() 来初始化新的类对象。 你需要做的只是提供类的名字、父类元组、关键字参数,以及一个用成员变量填充类字典的回调函数。例如:

# stock.py
# Example of making a class manually from parts

# Methods
def __init__(self, name, shares, price):
    self.name = name
    self.shares = shares
    self.price = price
def cost(self):
    return self.shares * self.price

cls_dict = {
    '__init__' : __init__,
    'cost' : cost,
}

# Make a class
import types

Stock = types.new_class('Stock', (), {}, lambda ns: ns.update(cls_dict))
Stock.__module__ = __name__

这种方式会构建一个普通的类对象,并且按照你的期望工作:

>>> s = Stock('ACME', 50, 91.1)
>>> s
<stock.Stock object at 0x1006a9b10>
>>> s.cost()
4555.0
>>>

这种方法中,一个比较难理解的地方是在调用完 types.new_class()Stock.__module__ 的赋值。 每次当一个类被定义后,它的 __module__ 属性包含定义它的模块名。 这个名字用于生成 __repr__() 方法的输出。它同样也被用于很多库,比如 pickle 。 因此,为了让你创建的类是“正确”的,你需要确保这个属性也设置正确了。

如果你想创建的类需要一个不同的元类,可以通过 types.new_class() 第三个参数传递给它。例如:

>>> import abc
>>> Stock = types.new_class('Stock', (), {'metaclass': abc.ABCMeta},
...                         lambda ns: ns.update(cls_dict))
...
>>> Stock.__module__ = __name__
>>> Stock
<class '__main__.Stock'>
>>> type(Stock)
<class 'abc.ABCMeta'>
>>>

第三个参数还可以包含其他的关键字参数。比如,一个类的定义如下:

class Spam(Base, debug=True, typecheck=False):
    pass

那么可以将其翻译成如下的 new_class() 调用形式:

Spam = types.new_class('Spam', (Base,),
                        {'debug': True, 'typecheck': False},
                        lambda ns: ns.update(cls_dict))

new_class() 第四个参数最神秘,它是一个用来接受类命名空间的映射对象的函数。 通常这是一个普通的字典,但是它实际上是 __prepare__() 方法返回的任意对象,这个在9.14小节已经介绍过了。 这个函数需要使用上面演示的 update() 方法给命名空间增加内容。


讨论

很多时候如果能构造新的类对象是很有用的。 有个很熟悉的例子是调用 collections.namedtuple() 函数,例如:

>>> Stock = collections.namedtuple('Stock', ['name', 'shares', 'price'])
>>> Stock
<class '__main__.Stock'>
>>>

namedtuple() 使用 exec() 而不是上面介绍的技术。但是,下面通过一个简单的变化, 我们直接创建一个类:

import operator
import types
import sys

def named_tuple(classname, fieldnames):
    # Populate a dictionary of field property accessors
    cls_dict = { name: property(operator.itemgetter(n))
                for n, name in enumerate(fieldnames) }

    # Make a __new__ function and add to the class dict
    def __new__(cls, *args):
        if len(args) != len(fieldnames):
            raise TypeError('Expected {} arguments'.format(len(fieldnames)))
        return tuple.__new__(cls, args)

    cls_dict['__new__'] = __new__

    # Make the class
    cls = types.new_class(classname, (tuple,), {},
                        lambda ns: ns.update(cls_dict))

    # Set the module to that of the caller
    cls.__module__ = sys._getframe(1).f_globals['__name__']
    return cls

这段代码的最后部分使用了一个所谓的”框架魔法”,通过调用 sys._getframe() 来获取调用者的模块名。 另外一个框架魔法例子在2.15小节中有介绍过。

下面的例子演示了前面的代码是如何工作的:

>>> Point = named_tuple('Point', ['x', 'y'])
>>> Point
<class '__main__.Point'>
>>> p = Point(4, 5)
>>> len(p)
2
>>> p.x
4
>>> p.y
5
>>> p.x = 2
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>> print('%s %s' % p)
4 5
>>>

这项技术一个很重要的方面是它对于元类的正确使用。 你可能像通过直接实例化一个元类来直接创建一个类:

Stock = type('Stock', (), cls_dict)

这种方法的问题在于它忽略了一些关键步骤,比如对于元类中 __prepare__() 方法的调用。 通过使用 types.new_class() ,你可以保证所有的必要初始化步骤都能得到执行。 比如,types.new_class() 第四个参数的回调函数接受 __prepare__() 方法返回的映射对象。

如果你仅仅只是想执行准备步骤,可以使用 types.prepare_class() 。例如:

import types
metaclass, kwargs, ns = types.prepare_class('Stock', (), {'metaclass': type})

它会查找合适的元类并调用它的 __prepare__() 方法。 然后这个元类保存它的关键字参数,准备命名空间后被返回。

更多信息, 请参考 PEP 3115 , 以及 Python documentation .